Part Number Hot Search : 
7K25A DCTG4 ZXSC310 Q6270 TQ8101C 1000M C10E4 SP19001
Product Description
Full Text Search
 

To Download MCP1702T-5002EMBVAO Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? 2010 microchip technology inc. ds22008e-page 1 mcp1702 features: 2.0 a quiescent current (typical) input operating voltage range: 2.7v to 13.2v 250 ma output current for output voltages ? 2.5v 200 ma output current for output voltages < 2.5v low dropout (ldo) voltage - 625 mv typical @ 250 ma (v out = 2.8v) 0.4% typical output voltage tolerance standard output voltage options: - 1.2v, 1.5v, 1.8v, 2.5v, 2.8v, 3.0v, 3.3v, 4.0v, 5.0v output voltage range 1.2v to 5.5v in 0.1v increments (50 mv increments available upon request) stable with 1.0 f to 22 f output capacitor short-circuit protection overtemperature protection applications: battery-powered devices battery-powered alarm circuits smoke detectors co 2 detectors pagers and cellular phones smart battery packs low quiescent current voltage reference pdas digital cameras microcontroller power solar-powered instruments consumer products battery powered data loggers related literature: an765, ?using microchip?s micropower ldos? , ds00765, microchip technology inc., 2002 an766, ?pin-compatible cmos upgrades to bipolar ldos? , ds00766, microchip technology inc., 2002 an792, ?a method to determine how much power a sot-23 can dissipate in an application? , ds00792, microchip technology inc., 2001 description: the mcp1702 is a family of cmos low dropout (ldo) voltage regulators that can deliver up to 250 ma of current while consuming only 2.0 a of quiescent current (typical). the input operating range is specified from 2.7v to 13.2v, making it an ideal choice for two to six primary cell battery-powered applications, 9v alkaline and one or two cell li-ion-powered applications. the mcp1702 is capable of delivering 250 ma with only 625 mv (typical) of input to output voltage differential (v out = 2.8v). the output voltage tolerance of the mcp1702 is typically 0.4% at +25c and 3% maximum over the operating junction temperature range of -40c to +125c. line regulation is 0.1% typical at +25c. output voltages available for the mcp1702 range from 1.2v to 5.0v. the ldo output is stable when using only 1 f of output capacitance. ceramic, tantalum or aluminum electrolytic capacitors can all be used for input and output. overcurrent limit and overtemperature shutdown provide a robust solution for any application. package options include the sot-23a, sot-89-3, and to-92. package types 1 3 2 v in gnd v out mcp1702 1 2 3 v in gnd v out mcp1702 3-pin sot-23a 3-pin sot-89 v in 3-pin to-92 12 v out v in gnd bottom view 3 250 ma low quiescent cu rrent ldo regulator downloaded from: http:///
mcp1702 ds22008e-page 2 ? 2010 microchip technology inc. functional block diagrams typical application circuits + - mcp1702 v in v out gnd +v in error amplifier voltage reference overcurrent overtemperature mcp1702 v in c in 1f ceramic c out 1f ceramic v out v in 3.3v i out 50 ma gnd v out 9v battery + downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 3 mcp1702 1.0 electrical characteristics absolute maximum ratings ? v dd ...............................................................................+14.5v all inputs and outputs w.r.t. .............(v ss -0.3v) to (v in +0.3v) peak output current ...................................................500 ma storage temperature .....................................-65c to +150c maximum junction temperature ................................... 150c esd protection on all pins (hbm;mm) ??????????????? ?? 4kv; ? 400v ? notice: stresses above those listed under maximum ratings may cause permanent damage to the device. this is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this s pecification is not implied. exposure to maximum rating conditions for extended periods may affect device reliability. dc characteristics electrical specifications: unless otherwise specified, al l limits are established for v in = v out(max) + v dropout(max) , note 1 , i load = 100 a, c out = 1 f (x7r), c in = 1 f (x7r), t a = +25c. boldface type applies for junction temperatures, t j of -40c to +125c. ( note 7 ) parameters sym min typ max units conditions input / output characteristics input operating voltage v in 2.7 13.2 v note 1 input quiescent current i q 2 . 0 5 a i l = 0 ma maximum output current i out_ma 250 ma for v r ? 2.5v 50 100 ma for v r < 2.5v, v in ? 2.7v 100 130 ma for v r < 2.5v, v in ? 2.95v 150 200 ma for v r < 2.5v, v in ? 3.2v 200 250 ma for v r < 2.5v, v in ? 3.45v output short circuit current i out_sc 400 ma v in = v in(min) ( note 1 ) , v out = gnd, current (average current) measured 10 ms after short is applied. output voltage regulation v out v r -3.0% v r 0.4% v r +3.0% v note 2 v r -2.0% v r 0.4% v r +2.0% v v r -1.0% v r 0.4% v r +1.0% v 1% custom v out temperature coefficient tcv out 5 0 p p m / c note 3 line regulation ? v out / (v out x ? v in ) -0.3 0.1 +0.3 %/v (v out(max) + v dropout(max) ) ? v in ? 13.2v, ( note 1 ) load regulation ? v out /v out -2.5 1.0 +2.5 %i l = 1.0 ma to 250 ma for v r ? 2.5v i l = 1.0 ma to 200 ma for v r ? 2.5v, v in = 3.45v ( note 4 ) note 1: the minimum v in must meet two conditions: v in ??? 2.7v and v in ??? v out(max) + v dropout(max) . 2: v r is the nominal regulator output voltage. for example: v r = 1.2v, 1.5v, 1.8v, 2.5v, 2.8v, 3.0v, 3.3v, 4.0v, or 5.0v. the input voltage v in = v out(max) + v dropout(max) or v in = 2.7v (whichever is greater); i out = 100 a. 3: tcv out = (v out-high - v out-low ) *10 6 / (v r * ? temperature), v out-high = highest voltage measured over the temperature range. v out-low = lowest voltage measured over the temperature range. 4: load regulation is measured at a constant junction temperature using low duty cycle pulse testing. changes in output voltage due to heating effects are determined using thermal regulation specification tcv out . 5: dropout voltage is defined as the input to output differentia l at which the output voltage drops 2% below its measured value with an applied input voltage of v out(max) + v dropout(max) or 2.7v, whichever is greater. 6: the maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., t a , t j , ? ja ). exceeding the maximum allowable power dissipation will cause the device operati ng junction temperature to exceed the maximum 150c rating. sustained junction temperatures above 150c can impact the device reliability. 7: the junction temperature is approximated by soaking the dev ice under test at an ambient temperature equal to the desired junction temperature. the test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant. downloaded from: http:///
mcp1702 ds22008e-page 4 ? 2010 microchip technology inc. dropout voltage ( note 1 , note 5 ) v dropout 330 650 mv i l = 250 ma, v r = 5.0v 525 725 mv i l = 250 ma, 3.3v ? v r < 5.0v 625 975 mv i l = 250 ma, 2.8v ? v r < 3.3v 750 1100 mv i l = 250 ma, 2.5v ? v r < 2.8v m vv r < 2.5v, see maximum output current parameter output delay time t delay 1000 s v in = 0v to 6v, v out = 90% v r r l = 50 ? resistive output noise e n 8 v / ( h z ) 1/2 i l = 50 ma, f = 1 khz, c out = 1 f power supply ripple rejection ratio psrr 44 db f = 100 hz, c out = 1 f, i l = 50 ma, v inac = 100 mv pk-pk, c in = 0 f, v r =1.2v thermal shutdown protection t sd 150 c dc characteristics (continued) electrical specifications: unless otherwise specified, al l limits are established for v in = v out(max) + v dropout(max) , note 1 , i load = 100 a, c out = 1 f (x7r), c in = 1 f (x7r), t a = +25c. boldface type applies for junction temperatures, t j of -40c to +125c. ( note 7 ) parameters sym min typ max units conditions note 1: the minimum v in must meet two conditions: v in ??? 2.7v and v in ??? v out(max) + v dropout(max) . 2: v r is the nominal regulator output voltage. for example: v r = 1.2v, 1.5v, 1.8v, 2.5v, 2.8v, 3.0v, 3.3v, 4.0v, or 5.0v. the input voltage v in = v out(max) + v dropout(max) or v in = 2.7v (whichever is greater); i out = 100 a. 3: tcv out = (v out-high - v out-low ) *10 6 / (v r * ? temperature), v out-high = highest voltage measured over the temperature range. v out-low = lowest voltage measured over the temperature range. 4: load regulation is measured at a constant junction temperature using low duty cycle pulse testing. changes in output voltage due to heating effects are determined using thermal regulation specification tcv out . 5: dropout voltage is defined as the input to output differentia l at which the output voltage drops 2% below its measured value with an applied input voltage of v out(max) + v dropout(max) or 2.7v, whichever is greater. 6: the maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., t a , t j , ? ja ). exceeding the maximum allowable power dissipation will cause the device operati ng junction temperature to exceed the maximum 150c rating. sustained junction temperatures above 150c c an impact the device reliability. 7: the junction temperature is approximated by soaking the dev ice under test at an ambient temperature equal to the desired junction temperature. the test time is small enough su ch that the rise in the junction temperature over the ambient temperature is not significant. downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 5 mcp1702 temperature specifications ( note 1 ) parameters sym min typ max units conditions temperature ranges operating junction temperature range t j -40 +125 c steady state maximum junction temperature t j +150 c transient storage temperature range t a -65 +150 c thermal package resistance ( note 2 ) thermal resistance, 3l-sot-23a ? ja 336 c/w eia/jedec jesd51-7 fr-4 0.063 4-layer board ? jc 1 1 0 c / w thermal resistance, 3l-sot-89 ? ja 153.3 c/w eia/jedec jesd51-7 fr-4 0.063 4-layer board ? jc 100 c/w thermal resistance, 3l-to-92 ? ja 131.9 c/w ? jc 66.3 c/w note 1: the maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., t a , t j , ? ja ). exceeding the maximum allowable power dissipation will cause the device operati ng junction temperature to exceed the maximum 150c rating. sustained junction temperatures above 150c can impact the device reliability. 2: thermal resistance values are subject to change. please vi sit the microchip web site for the latest packaging information. downloaded from: http:///
mcp1702 ds22008e-page 6 ? 2010 microchip technology inc. 2.0 typical performance curves note: unless otherwise indicated: v r = 2.8v, c out = 1 f ceramic (x7r), c in = 1 f ceramic (x7r), i l = 100 a, t a = +25c, v in = v out(max) + v dropout(max) . note: junction temperature (t j ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction temperature. the test time is small enough such that the rise in junction temperature over the ambient temperature is not signi ficant. figure 2-1: quiescent current vs. input voltage. figure 2-2: quiescent current vs.input voltage. figure 2-3: quiescent current vs.input voltage. figure 2-4: ground current vs. load current. figure 2-5: ground current vs. load current. figure 2-6: quiescent current vs. junction temperature. note: the graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. the performance characteristics listed herein are not tested or guaranteed. in some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. 0.00 1.00 2.00 3.00 4.00 5.00 2 4 6 8 10 12 14 input voltage (v) quiescent current (a) v out = 1.2v +25c +130c -45c 0c +90c 0.00 1.00 2.00 3.00 4.00 5.00 35791 11 3 input voltage (v) quiescent current (a) v out = 2.8v +25c +130c -45c 0c +90c 1.00 2.00 3.00 4.00 5.00 67891011121314 input voltage (v) quiescent current (a) v out = 5.0v +25c +130c -45c 0c +90c 0.00 20.00 40.00 60.00 80.00 100.00 120.00 0 40 80 120 160 200 load current (ma) gnd current (a) temperature = +25c v out = 1.2v v in = 2.7v 0.00 20.00 40.00 60.00 80.00 100.00 120.00 0 50 100 150 200 250 load current (ma) gnd current (a) temperature = +25c v out = 5.0v v in = 6.0v v out = 2.8v v in = 3.8v 0.00 0.50 1.00 1.50 2.00 2.50 3.00 -45 -20 5 30 55 80 105 130 junction temperature (c) quiescent current (a) i out = 0 ma v out = 5.0v v in = 6.0v v out = 1.2v v in = 2.7v v out = 2.8v v in = 3.8v downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 7 mcp1702 note: unless otherwise indicated: v r = 2.8v, c out = 1 f ceramic (x7r), c in = 1 f ceramic (x7r), i l = 100 a, t a = +25c, v in = v out(max) + v dropout(max) . figure 2-7: output voltage vs. input voltage. figure 2-8: output voltage vs. input voltage. figure 2-9: output voltage vs. input voltage. figure 2-10: output voltage vs. load current. figure 2-11: output voltage vs. load current. figure 2-12: output voltage vs. load current. 1.18 1.19 1.20 1.21 1.22 1.23 1.24 2 4 6 8 10 12 14 input voltage (v) output voltage (v) v out = 1.2v i load = 0.1 ma +25c +130c -45c 0c +90c 2.77 2.78 2.79 2.80 2.81 2.82 2.83 2.84 2.85 34567891011121314 input voltage (v) output voltage (v) v out = 2.8v i load = 0.1 ma +25c +130c -45c 0c +90c 4.96 4.98 5.00 5.02 5.04 5.06 67891011121314 input voltage (v) output voltage (v) v out = 5.0v i load = 0.1 ma +25c +130c -45c 0c +90c 1.18 1.19 1.20 1.21 1.22 1.23 0 2 04 06 08 01 0 0 load current (ma) output voltage (v) v out = 1.2v +25c +130c -45c 0c +90c 2.77 2.78 2.79 2.80 2.81 2.82 2.83 0 50 100 150 200 250 load current (ma) output voltage (v) v out = 2.8v +25c +130c -45c 0c +90c 4.96 4.97 4.98 4.99 5.00 5.01 5.02 5.03 5.04 0 50 100 150 200 250 load current (ma) output voltage (v) v out = 5.0v +25c +130c -45c 0c +90c downloaded from: http:///
mcp1702 ds22008e-page 8 ? 2010 microchip technology inc. note: unless otherwise indicated: v r = 2.8v, c out = 1 f ceramic (x7r), c in = 1 f ceramic (x7r), i l = 100 a, t a = +25c, v in = v out(max) + v dropout(max) . figure 2-13: dropout voltage vs. load current. figure 2-14: dropout voltage vs. load current. figure 2-15: dropout voltage vs. load current. figure 2-16: dynamic line response. figure 2-17: dynamic line response. figure 2-18: short circuit current vs. input voltage. 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 100 120 140 160 180 200 load current (ma) dropout voltage (v) v out = 1.8v +25c +130c -45c 0c +90c 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0 25 50 75 100 125 150 175 200 225 250 load current (ma) dropout voltage (v) v out = 2.8v +25c +130c +0c -45c +90c 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0 25 50 75 100 125 150 175 200 225 250 load current (ma) dropout voltage (v) v out = 5.0v +25c +130c +0c -45c +90c 0.00 100.00 200.00 300.00 400.00 500.00 600.00 4 6 8 10 12 14 input voltage (v) short circuit current (ma) v out = 2.8v r out < 0.1 downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 9 mcp1702 note: unless otherwise indicated: v r = 2.8v, c out = 1 f ceramic (x7r), c in = 1 f ceramic (x7r), i l = 100 a, t a = +25c, v in = v out(max) + v dropout(max) . figure 2-19: load regulation vs. temperature. figure 2-20: load regulation vs. temperature. figure 2-21: load regulation vs. temperature. figure 2-22: line regulation vs. temperature. figure 2-23: line regulation vs. temperature. figure 2-24: line regulation vs. temperature. -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 -45 -20 5 30 55 80 105 130 temperature (c) load regulation (%) v out = 1.2v i load = 0.1 ma to 200 ma v in = 4v v in = 13.2v v in = 6v v in = 12v v in = 10v -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 -45 -20 5 30 55 80 105 130 temperature (c) load regulation (%) v out = 2.8v i load = 1 ma to 250 ma v in = 3.8v v in = 13.2v v in = 10v v in = 6v -0.10 0.00 0.10 0.20 0.30 0.40 -45 -20 5 30 55 80 105 130 temperature (c) load regulation (%) v out = 5.0v i load = 1 ma to 250 ma v in = 6v v in = 13.2v v in = 8v v in = 10v 0.00 0.04 0.08 0.12 0.16 0.20 -45 -20 5 30 55 80 105 130 temperature (c) line regulation (%/v) v out = 1.2v v in = 2.7v to 13.2v 1 ma 100 ma 0 ma 0.00 0.04 0.08 0.12 0.16 0.20 -45 -20 5 30 55 80 105 130 temperature (c) line regulation (%/v) v out = 2.8v v in = 3.8v to 13.2v 200 ma 100 ma 0 ma 250 ma 0.06 0.08 0.10 0.12 0.14 0.16 -45 -20 5 30 55 80 105 130 temperature (c) line regulation (%/v) v out = 5.0v v in = 6.0v to 13.2v 200 ma 100 ma 0 ma 250 ma downloaded from: http:///
mcp1702 ds22008e-page 10 ? 2010 microchip technology inc. note: unless otherwise indicated: v r = 2.8v, c out = 1 f ceramic (x7r), c in = 1 f ceramic (x7r), i l = 100 a, t a = +25c, v in = v out(max) + v dropout(max) . figure 2-25: power supply ripple rejection vs. frequency. figure 2-26: power supply ripple rejection vs. frequency. figure 2-27: output noise vs. frequency. figure 2-28: power up timing. figure 2-29: dynamic load response. figure 2-30: dynamic load response. -90 -80 -70 -60 -50 -40 -30 -20 -10 0 0.01 0.1 1 10 100 1000 frequency (khz) psrr (db) v r =1.2v c out =1.0 f ceramic x7r v in =2.7v c in =0 f i out =1.0 ma -90 -80 -70 -60 -50 -40 -30 -20 -10 0 0.01 0.1 1 10 100 1000 frequency (khz) psrr (db) v r =5.0v c out =1.0 f ceramic x7r v in =6.0v c in =0 f i out =1.0 ma 0.001 0.01 0.1 1 10 100 0.01 0.1 1 10 100 1000 frequency (khz) noise (v/hz) v r =5.0v, v in =6.0v i out =50 ma v r =2,8v, v in =3.8v v r =1.2v, v in =2.7v downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 11 mcp1702 3.0 pin descriptions the descriptions of the pins are listed in tab l e 3 - 1 . table 3-1: pin function table 3.1 ground terminal (gnd) regulator ground. tie gnd to the negative side of the output and the negative side of the input capacitor. only the ldo bias current (2.0 a typical) flows out of this pin; there is no high current. the ldo output regulation is referenced to this pin. minimize voltage drops between this pin and the negative side of the load. 3.2 regulated output voltage (v out ) connect v out to the positive side of the load and the positive terminal of the output capacitor. the positive side of the output capacitor should be physically located as close to the ldo v out pin as is practical. the current flowing out of this pin is equal to the dc load current. 3.3 unregulated input voltage pin (v in ) connect v in to the input unregulated source voltage. like all ldo linear regulators, low source impedance is necessary for the stable operation of the ldo. the amount of capacitance required to ensure low source impedance will depend on the proximity of the input source capacitors or battery type. for most applications, 1 f of capacitance will ensure stable operation of the ldo circuit. for applications that have load currents below 100 ma, the input capacitance requirement can be lowered. the type of capacitor used can be ceramic, tantalum or aluminum electrolytic. the low esr characteristics of the ceramic will yield better noise and psrr performance at high-frequency. pin no. sot-23a pin no. sot-89 pin no. to-92 symbol function 1 1 1 gnd ground terminal 233v out regulated voltage output 32 , t a b2 v in unregulated supply voltage C C C nc no connection downloaded from: http:///
mcp1702 ds22008e-page 12 ? 2010 microchip technology inc. 4.0 detailed description 4.1 output regulation a portion of the ldo output voltage is fed back to the internal error amplifier and compared with the precision internal band gap reference. the error amplifier output will adjust the amount of current that flows through the p-channel pass transistor, thus regulating the output voltage to the desired value. any changes in input voltage or output current will cause the error amplifier to respond and adjust the output voltage to the target voltage (refer to figure 4-1 ). 4.2 overcurrent the mcp1702 internal circuitry monitors the amount of current flowing through the p-channel pass transistor. in the event of a short-circuit or excessive output current, the mcp1702 will turn off the p-channel device for a short period, after which the ldo will attempt to restart. if the excessive current remains, the cycle will repeat itself. 4.3 overtemperature the internal power dissipation within the ldo is a function of input-to-output voltage differential and load current. if the power dissipation within the ldo is excessive, the internal junction temperature will rise above the typical shutdown threshold of 150c. at that point, the ldo will shut down and begin to cool to the typical turn-on junction temperature of 130c. if the power dissipation is low enough, the device will continue to cool and operate normally. if the power dissipation remains high, the thermal shutdown protection circuitry will again turn off the ldo, protecting it from catastrophic failure. figure 4-1: block diagram. + - mcp1702 v in v out gnd +v in error amplifier voltage reference overcurrent overtemperature downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 13 mcp1702 5.0 functional description the mcp1702 cmos ldo linear regulator is intended for applications that need the lowest current consumption while maintaining output voltage regulation. the operating continuous load range of the mcp1702 is from 0 ma to 250 ma (v r ? 2.5v). the input operating voltage range is from 2.7v to 13.2v, making it capable of operating from two or more alkaline cells or single and multiple li-ion cell batteries. 5.1 input the input of the mcp1702 is connected to the source of the p-channel pmos pass transistor. as with all ldo circuits, a relatively low source impedance (10 ? ) is needed to prevent the input impedance from causing the ldo to become unstable. the size and type of the capacitor needed depends heavily on the input source type (battery, power supply) and the output current range of the application. for most applications (up to 100 ma), a 1 f ceramic capacitor will be sufficient to ensure circuit stability. larger values can be used to improve circuit ac performance. 5.2 output the maximum rated continuous output current for the mcp1702 is 250 ma (v r ? 2.5v). for applications where v r < 2.5v, the maximum output current is 200 ma. a minimum output capacitance of 1.0 f is required for small signal stability in applications that have up to 250 ma output current capability. the capacitor type can be ceramic, tantalum or aluminum electrolytic. the esr range on the output capacitor can range from 0 ? to 2.0 ? . the output capacitor range for ceramic capacitors is 1 f to 22 f. higher output capacitance values may be used for tantalum and electrolytic capacitors. higher output capacitor values pull the pole of the ldo transfer function inward that results in higher phase shifts which in turn cause a lower crossover frequency. the circuit designer should verify the stability by applying line step and load step testing to their system when using capacitance values greater than 22 f. 5.3 output rise time when powering up the internal reference output, the typical output rise time of 500 s is controlled to prevent overshoot of the output voltage. there is also a start-up delay time that ranges from 300 s to 800 s based on loading. the start-up time is separate from and precedes the output rise time. the total output delay is the start-up delay plus the output rise time. downloaded from: http:///
mcp1702 ds22008e-page 14 ? 2010 microchip technology inc. 6.0 application circuits and issues 6.1 typical application the mcp1702 is most commonly used as a voltage regulator. its low quiescent current and low dropout voltage makes it ideal for many battery-powered applications. figure 6-1: typical application circuit. 6.1.1 application input conditions 6.2 power calculations 6.2.1 power dissipation the internal power dissipation of the mcp1702 is a function of input voltage, output voltage and output current. the power dissipation, as a result of the quiescent current draw, is so low, it is insignificant (2.0 a x v in ). the following equation can be used to calculate the internal power dissipation of the ldo. equation 6-1: the maximum continuous operating junction temperature specified for the mcp1702 is +125 c . to estimate the internal junction temperature of the mcp1702, the total internal power dissipation is multiplied by the thermal resistance from junction to ambient (r ? ja ). the thermal resistance from junction to ambient for the sot-23a pin package is estimated at 336 c/w. equation 6-2: the maximum power dissipation capability for a package can be calculated given the junction-to- ambient thermal resistance and the maximum ambient temperature for the application. the following equation can be used to determine the package maximum internal power dissipation. equation 6-3: equation 6-4: equation 6-5: package type = sot-23a input voltage range = 2.8v to 3.2v v in maximum = 3.2v v out typical = 1.8v i out = 150 ma maximum mcp1702 gnd v out v in c in 1 f ceramic c out 1f ceramic v out v in (2.8v to 3.2v) 1.8v i out 150 ma p ldo v in max ? ?? v out min ?? ? ?? i out max ? ?? ? = where: p ldo = ldo pass device internal power dissipation v in(max) = maximum input voltage v out(min) = ldo minimum output voltage t jmax ?? p total r ? ja ? t amax + = where: t j(max) = maximum continuous junction temperature p total = total device power dissipation r ? ja thermal resistance from junction to ambient t amax = maximum ambient temperature p dmax ?? t jmax ?? t amax ?? ? ?? r ? ja --------------------------------------------------- = where: p d(max) = maximum device power dissipation t j(max) = maximum continuous junction temperature t a(max) maximum ambient temperature r ? ja = thermal resistance from junction to ambient t jrise ?? p dmax ?? r ? ja ? = where: t j(rise) = rise in device junction temperature over the ambient temperature p total = maximum device power dissipation r ? ja thermal resistance from junction to ambient t j t jrise ?? t a + = where: t j = junction temperature t j(rise) = rise in device junction temperature over the ambient temperature t a ambient temperature downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 15 mcp1702 6.3 voltage regulator internal power dissipation, junction temperature rise, junction temperature and maximum power dissipation are calculated in the following example. the power dissipation, as a result of ground current, is small enough to be neglected. 6.3.1 power dissipation example device junction temperature rise the internal junction temperature rise is a function of internal power dissipation and the thermal resistance from junction to ambient for the application. the thermal resistance from junction to ambient (r ? ja ) is derived from an eia/jedec standard for measuring thermal resistance for small surface mount packages. the eia/jedec specification is jesd51-7, high effective thermal conductivity test board for leaded surface mount packages. the standard describes the test method and board specifications for measuring the thermal resistance from junction to ambient. the actual thermal resistance for a particular application can vary depending on many factors, such as copper area and thickness. refer to an792, ?a method to determine how much power a sot-23 can dissipate in an application? , (ds00792), for more information regarding this subject. junction temperature estimate to estimate the internal junction temperature, the calculated temperature rise is added to the ambient or offset temperature. for this example, the worst-case junction temperature is estimated below. maximum package power dissipation at +40c ambient temperature assuming minimal copper usage. 6.4 voltage reference the mcp1702 can be used not only as a regulator, but also as a low quiescent current voltage reference. in many microcontroller applications, the initial accuracy of the reference can be calibrated using production test equipment or by using a ratio measurement. when the initial accuracy is calibrated, the thermal stability and line regulation tolerance are the only errors introduced by the mcp1702 ldo. the low-cost, low quiescent current and small ceramic output capacitor are all advantages when using the mcp1702 as a voltage reference. figure 6-2: using the mcp1702 as a voltage reference. package package type = sot-23a input voltage v in = 2.8v to 3.2v ldo output voltages and currents v out =1.8v i out =150ma maximum ambient temperature t a(max) =+40c internal power dissipation internal power dissipation is the product of the ldo output current times the voltage across the ldo (v in to v out ). p ldo(max) =(v in(max) - v out(min) ) x i out(max) p ldo = (3.2v - (0.97 x 1.8v)) x 150 ma p ldo = 218.1 milli-watts t j(rise) =p total x rq ja t jrise = 218.1 milli-watts x 336.0 c/watt t jrise = 73.3 c t j =t jrise + t a(max) t j =113.3c sot-23 (336.0c/watt = r ? ja ) p d(max) = (+125c - 40c) / 336c/w p d(max) = 253 milli-watts sot-89 (153.3c/watt = r ? ja ) p d(max) = (+125c - 40c) / 153.3c/w p d(max) = 0.554 watts to92 (131.9c/watt = r ? ja ) p d(max) = (+125c - 40c) / 131.9c/w p d(max) = 644 milli-watts pic ? mcp1702 gnd v in c in 1f c out 1f bridge sensor v out v ref ado ad1 ratio metric reference 2 a bias microcontroller downloaded from: http:///
mcp1702 ds22008e-page 16 ? 2010 microchip technology inc. 6.5 pulsed load applications for some applications, there are pulsed load current events that may exceed the specified 250 ma maximum specification of the mcp1702. the internal current limit of the mcp1702 will prevent high peak load demands from causing non-recoverable damage. the 250 ma rating is a maximum average continuous rating. as long as the average current does not exceed 250 ma, pulsed higher load currents can be applied to the mcp1702 . the typical current limit for the mcp1702 is 500 ma (t a +25c). downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 17 mcp1702 7.0 packaging information 7.1 package marking information 3-pin sot-23a xxnn standard extended temp symbol voltage * symbol voltage * ha 1.2 hf 3.0 hb 1.5 hg 3.3 hc 1.8 hh 4.0 hd 2.5 hj 5.0 he 2.8 custom ga 4.5 gc 2.1 gb 2.2 gd 4.1 * custom output voltages available upon request. contact your local microchip sales office for more information. example: hann legend: xx...x customer-specific information y year code (last digit of calendar year) yy year code (last 2 digits of calendar year) ww week code (week of january 1 is week 01) nnn alphanumeric traceability code pb-free jedec designator for matte tin (sn) * this package is pb-free. the pb-free jedec designator ( ) can be found on the outer packaging for this package. note : in the event the full microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. 3 e 3 e standard extended temp symbol voltage * symbol voltage * ha 1.2 hf 3.0 hb 1.5 hg 3.3 hc 1.8 hk 3.6 hd 2.5 hh 4.0 he 2.8 hj 5.0 custom l a2 . 1h 94 . 2 lb 3.2 * custom output voltages available upon request. contact your local microchip sales office for more information. 3-lead sot-89 xxxyyww nnn example: ha1014 256 3-lead to-92 xxxxxx xxxxxx xxxxxx ywwnnn example: 1702 1202e to ^^ 014256 3 e downloaded from: http:///
mcp1702 ds22008e-page 18 ? 2010 microchip technology inc. 
 

         !"!#$! !% 
#$  !% 
#$    # & !
 !       !#   
"'( )*+ )     #  & #, $  --#$##      .#  #$ #
/ ! - 0
  # 
1 /  
% # # ! # ##
+22---
2
/  3# 44""   4# 5 56 7 5$8 %1 5  4 !1# ()* 6$# ! 4 !1#  )* 6,  9  #  : ; ( ! !1 / /   ;  # !%%   ; ( 6,  <!# "  ;  ! !1 / <!# "  ; : 6,  4  #   ;  .#4  # 4 ( ; = .#  > ; > 4 !/   ; = 4 !<!# 8  ; ( d e e1 2 1 e e1 n b aa1 a2 c l 
    - * ) downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 19 mcp1702 note: for the most current package drawings, please see the microchip packaging specification located at http://www.microchip.com/packaging downloaded from: http:///
mcp1702 ds22008e-page 20 ? 2010 microchip technology inc. 
 

 !"#$        !"!#$! !% 
#$  !% 
#$    # & !
 !       !#   
"'( )*+ )     #  & #, $  --#$##      .#  #$ #
/ ! - 0
  # 
1 /  
% # # ! # ##
+22---
2
/  3# 44""   4# 5 7 5$8 %4 ! 5  1# ()* 6$# ! 4 !1#  )* 6,  9  #   = 6,  <!# 9  ( ! !1 / <!# #) "  = ! !1 / <!# #
"   6,  4  #   =  84  #   : .#4  # 4   4 !/  (  4 !<!# 8  (= 4 ! ?<!# 8 = : d d1 e h n b1 e1 b 2 1 e b1 l a c e1 
    - * ) downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 21 mcp1702 note: for the most current package drawings, please see the microchip packaging specification located at http://www.microchip.com/packaging downloaded from: http:///
mcp1702 ds22008e-page 22 ? 2010 microchip technology inc. 
  
$         !"!#$! !% 
#$  !% 
#$    # & !(@
 !       !#   
"'( )*+ )     #  & #, $  --#$##      .#  #$ #
/ ! - 0
  # 
1 /  
% # # ! # ##
+22---
2
/  3# 5*9"   4# 5 7 5$8 %1 5  1# ()* )###1 / . #  ( =( 6,  <!# " ( ( 6,  4  #    ! !1 /  !$  : ( 
# # 1  4 ( ; 4 !/    4 !<!# 8   e a n 1 l b e c r d 1 2 3 
    - * ) downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 23 mcp1702 appendix a: revision history revision e (november 2010) the following is the list of modifications: 1. updated the thermal resistance typical value for the sot-89 package in the junction temperature estimate section. revision d (june 2009) the following is the list of modifications: 1. dc characteristics table : updated the v out temperature coefficients maximum value. 2. section 7.0 packaging information : updated package outline drawings. revision c (november 2008) the following is the list of modifications: 1. dc characteristics table: added row to output voltage regulation for 1% custom part. 2. temperature specifications table: numerous changes to table. 3. added note 2 to temperature specifications table . 4. section 5.0 functional description , section 5.2 output : added second paragraph. 5. section 7.0 packaging information : added 1% custom part information to this section. also, updated package outline drawings. 6. product identification system : added 1% custom part information to this page. revision b (may 2007) the following is the list of modifications: 1. all pages: corrected minor errors in document. 2. page 4: added junction-to-case information to temperature specifications table. 3. page 16: updated package outline drawings in section 7.0 packaging information . 4. page 21: updated revision history. 5. page 23: corrected examples in product identification system . revision a (september 2006) original release of this document. downloaded from: http:///
mcp1702 ds22008e-page 24 ? 2010 microchip technology inc. product identification system to order or obtain information, e. g., on pricing or delivery, refer to the factory or the listed sales office . device: mcp1702: 2 a low dropout positive voltage regulator tape and reel: t = tape and reel output voltage *: 12 = 1.2v standard 15 = 1.5v standard 18 = 1.8v standard 25 = 2.5v standard 28 = 2.8v standard 30 = 3.0v standard 33 = 3.3v standard 40 = 4.0v standard 50 = 5.0v standard *contact factory for other output voltage options. extra feature code: 0 = fixed tolerance: 2 = 2.0% (standard) 1 = 1.0% (custom) temperature: e= -40 ? c to +125 ? c package type: cb = plastic small outline transistor (sot-23a) (equivalent to eiaj sc-59), 3-lead, mb = plastic small outline transistor header, (sot-89), 3-lead to = plastic transistor outline (to-92), 3-lead part no. x xx output feature code device voltage x tolerance x/ temp. xx package x- tape and reel examples: a) mcp1702t-1202e/cb: 1.2v ldo positive voltage regulator, sot-23a-3 pkg. b) mcp1702t-1802e/mb: 1.8v ldo positive voltage regulator, sot-89-3 pkg. c) mcp1702t-2502e/cb: 2.5v ldo positive voltage regulator, sot-23a-3 pkg. d) mcp1702t-3002e/cb: 3.0v ldo positive voltage regulator, sot-23a-3 pkg. e) mcp1702t-3002e/mb: 3.0v ldo positive voltage regulator, sot-89-3 pkg. f) mcp1702t-3302e/cb: 3.3v ldo positive voltage regulator, sot-23a-3 pkg. g) mcp1702t-3302e/mb: 3.3v ldo positive voltage regulator, sot-89-3 pkg. h) mcp1702t-4002e/cb: 4.0v ldo positive voltage regulator, sot-23a-3 pkg. i) mcp1702-5002e/to: 5.0v ldo positive voltage regulator, to-92 pkg. j) mcp1702t-5002e/cb: 5.0v ldo positive voltage regulator, sot-23a-3 pkg. k) mcp1702t-5002e/mb: 5.0v ldo positive voltage regulator, sot-89-3 pkg. downloaded from: http:///
? 2010 microchip technology inc. ds22008e-page 25 information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. it is your responsibility to ensure that your application meets with your specifications. microchip makes no representations or warranties of any kind whether express or implied, written or oral, statutory or otherwise, related to the information, including but not limited to its condition, quality, performance, merchantability or fitness for purpose . microchip disclaims all liability arising from this information and its use. use of microchip devices in life support and/or safety applications is entirely at the buyers risk, and the buyer agrees to defend, indemnify and hold harmless microchip from any and all damages, claims, suits, or expenses resulting from such use. no licenses are conveyed, implicitly or otherwise, under any microchip intellectual property rights. trademarks the microchip name and logo, the microchip logo, dspic, k ee l oq , k ee l oq logo, mplab, pic, picmicro, picstart, pic 32 logo, rfpic and uni/o are registered trademarks of microchip technology incorporated in the u.s.a. and other countries. filterlab, hampshire, hi-tech c, linear active thermistor, mxdev, mxlab, seeval and the embedded control solutions company are registered trademarks of microchip technology incorporated in the u.s.a. analog-for-the-digital age, appl ication maestro, codeguard, dspicdem, dspicdem.net, dspicworks, dsspeak, ecan, economonitor, fansense, hi-tide, in-circuit serial programming, icsp, mindi, miwi, mpasm, mplab certified logo, mplib, mplink, mtouch, omniscient code generation, picc, picc-18, picdem, picdem.net, pickit, pictail, real ice, rflab, select mode, total endurance, tsharc, uniwindriver, wiperlock and zena are trademarks of microchip tec hnology incorporated in the u.s.a. and other countries. sqtp is a service mark of microchip technology incorporated in the u.s.a. all other trademarks mentioned herein are property of their respective companies. ? 2010, microchip technology incorporated, printed in the u.s.a., all rights reserved. printed on recycled paper. isbn: 978-1-60932-690-6 note the following details of the code protection feature on microchip devices: microchip products meet the specification cont ained in their particular microchip data sheet. microchip believes that its family of products is one of the most secure families of its kind on the market today, when used i n the intended manner and under normal conditions. there are dishonest and possibly illegal methods used to breach the code protection feature. all of these methods, to our knowledge, require using the microchip products in a manner outside the operating specif ications contained in microchips data sheets. most likely, the person doing so is engaged in theft of intellectual property. microchip is willing to work with the customer who is concerned about the integrity of their code. neither microchip nor any other semiconduc tor manufacturer can guarantee the security of their code. code protection does not mean that we are guaranteeing the product as unbreakable. code protection is constantly evolving. we at microchip are co mmitted to continuously improvin g the code protection features of our products. attempts to break microchips code protection feature may be a violation of the digital millennium copyright act. if such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that act. microchip received iso/ts-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in chandler and tempe, arizona; gresham, oregon and design centers in california and india. the company?s quality system processes and procedures are for its pic ? mcus and dspic ? dscs, k ee l oq ? code hopping devices, serial eeproms, microperipherals, nonvolatile memory an d analog products. in addition, microchip?s quality system for the design and manufacture of development systems is iso 9001:2000 certified. downloaded from: http:///
ds22008e-page 26 ? 2010 microchip technology inc. americas corporate office 2355 west chandler blvd. chandler, az 85224-6199 tel: 480-792-7200 fax: 480-792-7277 technical support: http://support.microchip.com web address: www.microchip.com atlanta duluth, ga tel: 678-957-9614 fax: 678-957-1455 boston westborough, ma tel: 774-760-0087 fax: 774-760-0088 chicago itasca, il tel: 630-285-0071 fax: 630-285-0075 cleveland independence, oh tel: 216-447-0464 fax: 216-447-0643 dallas addison, tx tel: 972-818-7423 fax: 972-818-2924 detroit farmington hills, mi tel: 248-538-2250 fax: 248-538-2260 kokomo kokomo, in tel: 765-864-8360 fax: 765-864-8387 los angeles mission viejo, ca tel: 949-462-9523 fax: 949-462-9608 santa clara santa clara, ca tel: 408-961-6444 fax: 408-961-6445 toronto mississauga, ontario, canada tel: 905-673-0699 fax: 905-673-6509 asia/pacific asia pacific office suites 3707-14, 37th floor tower 6, the gateway harbour city, kowloon hong kong tel: 852-2401-1200 fax: 852-2401-3431 australia - sydney tel: 61-2-9868-6733 fax: 61-2-9868-6755 china - beijing tel: 86-10-8528-2100 fax: 86-10-8528-2104 china - chengdu tel: 86-28-8665-5511 fax: 86-28-8665-7889 china - chongqing tel: 86-23-8980-9588 fax: 86-23-8980-9500 china - hong kong sar tel: 852-2401-1200 fax: 852-2401-3431 china - nanjing tel: 86-25-8473-2460 fax: 86-25-8473-2470 china - qingdao tel: 86-532-8502-7355 fax: 86-532-8502-7205 china - shanghai tel: 86-21-5407-5533 fax: 86-21-5407-5066 china - shenyang tel: 86-24-2334-2829 fax: 86-24-2334-2393 china - shenzhen tel: 86-755-8203-2660 fax: 86-755-8203-1760 china - wuhan tel: 86-27-5980-5300 fax: 86-27-5980-5118 china - xian tel: 86-29-8833-7252 fax: 86-29-8833-7256 china - xiamen tel: 86-592-2388138 fax: 86-592-2388130 china - zhuhai tel: 86-756-3210040 fax: 86-756-3210049 asia/pacific india - bangalore tel: 91-80-3090-4444 fax: 91-80-3090-4123 india - new delhi tel: 91-11-4160-8631 fax: 91-11-4160-8632 india - pune tel: 91-20-2566-1512 fax: 91-20-2566-1513 japan - yokohama tel: 81-45-471- 6166 fax: 81-45-471-6122 korea - daegu tel: 82-53-744-4301 fax: 82-53-744-4302 korea - seoul tel: 82-2-554-7200 fax: 82-2-558-5932 or 82-2-558-5934 malaysia - kuala lumpur tel: 60-3-6201-9857 fax: 60-3-6201-9859 malaysia - penang tel: 60-4-227-8870 fax: 60-4-227-4068 philippines - manila tel: 63-2-634-9065 fax: 63-2-634-9069 singapore tel: 65-6334-8870 fax: 65-6334-8850 taiwan - hsin chu tel: 886-3-6578-300 fax: 886-3-6578-370 taiwan - kaohsiung tel: 886-7-213-7830 fax: 886-7-330-9305 taiwan - taipei tel: 886-2-2500-6610 fax: 886-2-2508-0102 thailand - bangkok tel: 66-2-694-1351 fax: 66-2-694-1350 europe austria - wels tel: 43-7242-2244-39 fax: 43-7242-2244-393 denmark - copenhagen tel: 45-4450-2828 fax: 45-4485-2829 france - paris tel: 33-1-69-53-63-20 fax: 33-1-69-30-90-79 germany - munich tel: 49-89-627-144-0 fax: 49-89-627-144-44 italy - milan tel: 39-0331-742611 fax: 39-0331-466781 netherlands - drunen tel: 31-416-690399 fax: 31-416-690340 spain - madrid tel: 34-91-708-08-90 fax: 34-91-708-08-91 uk - wokingham tel: 44-118-921-5869 fax: 44-118-921-5820 worldwide sales and service 08/04/10 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of MCP1702T-5002EMBVAO

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X